49 research outputs found

    The influence of risk culture on the performance of international joint-venture securities

    Get PDF
    With the development of economic globalization, culture is a key factor supporting the sustainability of foreign direct investment (FDI), especially for multinational enterprises. This paper takes the Chinese capital market as a sample and, combined with interviews with managers of international joint-venture securities (IJVS), finds that the culture of participants formed in developed and emerging capital market has a significant impact on the performance of IJVS. Using the degree of price fluctuation to measure the risk culture of each capital market, this paper observes that the risk culture in the Chinese capital market is significantly stronger than that of developed countries. This paper also finds that the stronger the risk culture IJVS shareholders have, the better they can adapt to the environment of the Chinese capital market and the better the performance they can achieve. Furthermore, risk culture distance, calculated by the risk culture differences between foreign shareholders and Chinese capital market, are significantly negatively correlated with IJVS performance and efficiency

    MPSN: Motion-aware Pseudo Siamese Network for Indoor Video Head Detection in Buildings

    Full text link
    Head detection in the indoor video is an essential component of building occupancy detection. While deep models have achieved remarkable progress in general object detection, they are not satisfying enough in complex indoor scenes. The indoor surveillance video often includes cluttered background objects, among which heads have small scales and diverse poses. In this paper, we propose Motion-aware Pseudo Siamese Network (MPSN), an end-to-end approach that leverages head motion information to guide the deep model to extract effective head features in indoor scenarios. By taking the pixel-wise difference of adjacent frames as the auxiliary input, MPSN effectively enhances human head motion information and removes the irrelevant objects in the background. Compared with prior methods, it achieves superior performance on the two indoor video datasets. Our experiments show that MPSN successfully suppresses static background objects and highlights the moving instances, especially human heads in indoor videos. We also compare different methods to capture head motion, which demonstrates the simplicity and flexibility of MPSN. Finally, to validate the robustness of MPSN, we conduct adversarial experiments with a mathematical solution of small perturbations for robust model selection. Code is available at https://github.com/pl-share/MPSN

    SEABO: A Simple Search-Based Method for Offline Imitation Learning

    Full text link
    Offline reinforcement learning (RL) has attracted much attention due to its ability in learning from static offline datasets and eliminating the need of interacting with the environment. Nevertheless, the success of offline RL relies heavily on the offline transitions annotated with reward labels. In practice, we often need to hand-craft the reward function, which is sometimes difficult, labor-intensive, or inefficient. To tackle this challenge, we set our focus on the offline imitation learning (IL) setting, and aim at getting a reward function based on the expert data and unlabeled data. To that end, we propose a simple yet effective search-based offline IL method, tagged SEABO. SEABO allocates a larger reward to the transition that is close to its closest neighbor in the expert demonstration, and a smaller reward otherwise, all in an unsupervised learning manner. Experimental results on a variety of D4RL datasets indicate that SEABO can achieve competitive performance to offline RL algorithms with ground-truth rewards, given only a single expert trajectory, and can outperform prior reward learning and offline IL methods across many tasks. Moreover, we demonstrate that SEABO also works well if the expert demonstrations contain only observations. Our code is publicly available at https://github.com/dmksjfl/SEABO.Comment: To appear in ICLR202

    What is Essential for Unseen Goal Generalization of Offline Goal-conditioned RL?

    Full text link
    Offline goal-conditioned RL (GCRL) offers a way to train general-purpose agents from fully offline datasets. In addition to being conservative within the dataset, the generalization ability to achieve unseen goals is another fundamental challenge for offline GCRL. However, to the best of our knowledge, this problem has not been well studied yet. In this paper, we study out-of-distribution (OOD) generalization of offline GCRL both theoretically and empirically to identify factors that are important. In a number of experiments, we observe that weighted imitation learning enjoys better generalization than pessimism-based offline RL method. Based on this insight, we derive a theory for OOD generalization, which characterizes several important design choices. We then propose a new offline GCRL method, Generalizable Offline goAl-condiTioned RL (GOAT), by combining the findings from our theoretical and empirical studies. On a new benchmark containing 9 independent identically distributed (IID) tasks and 17 OOD tasks, GOAT outperforms current state-of-the-art methods by a large margin.Comment: Accepted by Proceedings of the 40th International Conference on Machine Learning, 202

    Enabling qualitative research data sharing using a natural language processing pipeline for deidentification: Moving beyond HIPAA Safe Harbor identifiers

    Get PDF
    OBJECTIVE: Sharing health research data is essential for accelerating the translation of research into actionable knowledge that can impact health care services and outcomes. Qualitative health research data are rarely shared due to the challenge of deidentifying text and the potential risks of participant reidentification. Here, we establish and evaluate a framework for deidentifying qualitative research data using automated computational techniques including removal of identifiers that are not considered HIPAA Safe Harbor (HSH) identifiers but are likely to be found in unstructured qualitative data. MATERIALS AND METHODS: We developed and validated a pipeline for deidentifying qualitative research data using automated computational techniques. An in-depth analysis and qualitative review of different types of qualitative health research data were conducted to inform and evaluate the development of a natural language processing (NLP) pipeline using named-entity recognition, pattern matching, dictionary, and regular expression methods to deidentify qualitative texts. RESULTS: We collected 2 datasets with 1.2 million words derived from over 400 qualitative research data documents. We created a gold-standard dataset with 280K words (70 files) to evaluate our deidentification pipeline. The majority of identifiers in qualitative data are non-HSH and not captured by existing systems. Our NLP deidentification pipeline had a consistent F1-score of ∼0.90 for both datasets. CONCLUSION: The results of this study demonstrate that NLP methods can be used to identify both HSH identifiers and non-HSH identifiers. Automated tools to assist researchers with the deidentification of qualitative data will be increasingly important given the new National Institutes of Health (NIH) data-sharing mandate

    Uncertainty-driven Trajectory Truncation for Model-based Offline Reinforcement Learning

    Full text link
    Equipped with the trained environmental dynamics, model-based offline reinforcement learning (RL) algorithms can often successfully learn good policies from fixed-sized datasets, even some datasets with poor quality. Unfortunately, however, it can not be guaranteed that the generated samples from the trained dynamics model are reliable (e.g., some synthetic samples may lie outside of the support region of the static dataset). To address this issue, we propose Trajectory Truncation with Uncertainty (TATU), which adaptively truncates the synthetic trajectory if the accumulated uncertainty along the trajectory is too large. We theoretically show the performance bound of TATU to justify its benefits. To empirically show the advantages of TATU, we first combine it with two classical model-based offline RL algorithms, MOPO and COMBO. Furthermore, we integrate TATU with several off-the-shelf model-free offline RL algorithms, e.g., BCQ. Experimental results on the D4RL benchmark show that TATU significantly improves their performance, often by a large margin

    Wasserstein Distance guided Adversarial Imitation Learning with Reward Shape Exploration

    Full text link
    The generative adversarial imitation learning (GAIL) has provided an adversarial learning framework for imitating expert policy from demonstrations in high-dimensional continuous tasks. However, almost all GAIL and its extensions only design a kind of reward function of logarithmic form in the adversarial training strategy with the Jensen-Shannon (JS) divergence for all complex environments. The fixed logarithmic type of reward function may be difficult to solve all complex tasks, and the vanishing gradients problem caused by the JS divergence will harm the adversarial learning process. In this paper, we propose a new algorithm named Wasserstein Distance guided Adversarial Imitation Learning (WDAIL) for promoting the performance of imitation learning (IL). There are three improvements in our method: (a) introducing the Wasserstein distance to obtain more appropriate measure in the adversarial training process, (b) using proximal policy optimization (PPO) in the reinforcement learning stage which is much simpler to implement and makes the algorithm more efficient, and (c) exploring different reward function shapes to suit different tasks for improving the performance. The experiment results show that the learning procedure remains remarkably stable, and achieves significant performance in the complex continuous control tasks of MuJoCo.Comment: M. Zhang and Y. Wang contribute equally to this wor
    corecore